Prosthetic innovation: ‘It’s like you have a hand again’ – study

Science

NEW YORK (Reuters) – Today’s artificial limbs can look very natural, and now an innovative process makes prosthetic hands move more naturally as well.

Paul Cederna (foreground), the Robert Oneal Professor of Plastic Surgery at the University of Michigan, shifts his attention as Daniel Lyons, a resident of plastic surgery, stitches up the arm of Karen Sussex, a participant in the U-M RPNI study, after implanting clinical bipolar electrodes that enable intuitive mind control of an advanced prosthetic handin Ann Arbor, Michigan, October 24, 2018. Evan Dougherty/University of Michigan Engineering via REUTERS

In an innovative experiment, scientists have shown that the nerves in patients’ arms can be trained to control the movements of prosthetic fingers and thumbs.

“This is the biggest advance in motor control for people with amputations in many years,” said Paul Cederna, a professor of plastic surgery and biomedical engineering at the University of Michigan.

A challenge to powering prosthetics has been the minute signals put out by an amputee’s nerves. Cederna’s team boosted the signal by wrapping tiny bits of muscle around nerve endings, according to their study published in Science Translational Medicine.

As the nerves grow into the muscle, the person’s thoughts can create a muscle twitch that produces a signal big enough to be picked up by tiny wires connected to a nearby computer, which tells the prosthetic hand to move.

“Our ultimate goal is to have prosthetic limbs that the person views as a part of their body,” Cederna said.

In an example of how well the system works, a woman who was nervously tapping her own fingers prompted the prosthetic to tap right along with it, Cederna said. “It was just doing what the other hand was doing, like it was a part of her,” he noted.

“This worked the very first time we tried it. There’s no learning for the participants. All of the learning happens in our algorithms. That’s different from other approaches.”

The procedure also worked for another amputee in the study who had lost not only his hand, but also part of his arm.

“It’s the coolest part of what they’ve shown,” said Lee Fisher, an assistant professor in the University of Pittsburgh’s department of physical medicine and rehabilitation and bioengineering.

Participants were able to pick up blocks with a pincer grasp, move their thumb in a continuous motion, lift spherical objects, and even play in a version of Rock, Paper, Scissors, according to the study.

The approach is an “exciting innovation,” but no one can predict when it will be marketable, said David Putrino, co-director of the abilities research center at Mount Sinai Hospital in New York. “Currently it takes 17 years to get something (from the lab) out into clinical practice,” he said.

Reporting by Linda Carroll; Editing by Richard Chang

Products You May Like

Articles You May Like

Democrats Are Flying Through Biden Judicial Confirmations And Screwing Trump
SpaceX Launches Starship Rocket as US President-Elect Donald Trump and Elon Musk Look On
We Talked To Some Movie Theater Employees About Gladiator II And Experiencing It In IMAX
Roderer’s Award Briefcase Review: Luxury and Practicality in Perfect Harmony
Alphabet shares slide 4% following DOJ push for Google to divest Chrome